

Northern University, Nowshera

Spring 2024

Polymorphism

Week # 13 - Lecture 25 - 26

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

2

LLeeaarrnniinngg OObbjjeeccttiivveess::

 Assignment Solution (Week 12)

 Polymorphism

 Compile time Polymorphism

 Method overloading

 Operator overloading

 Run time/Dynamic Polymorphism

 Method overriding

 Overloading VS overriding

 Static polymorphism VS Dynamic Polymorphism

 Home task for practice

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

3

AAssssiiggnnmmeenntt SSoolluuttiioonn

Q: Write code for the following classes.

You are required to implement a system where information of authors with their books has

been stored using the concept discussed in this lesson (Association, aggregation and

composition).

Author class contains author name (String), email (String), total number of written books with

following book detail.

Book class has book ID (String), Book Title (String), price (float) and publisher (String) has

attributes.

Associate these two classes with each other (according to your understanding) in a way that

user can get the information of author with detail of his total written books, like book title,

publisher, id and price. Demonstrate your program in main() function by creating an object of

class author with at least 3 books.

Note: Write setter and getter functions for both classes and also write appropriate

constructors.

Solution:

class Book{
 String title, publisher, ID;
 float price;
 void setBook(){
 System.out.println("Enter Book title: ");
 Scanner s=new Scanner(System.in);
 title=s.nextLine();
 Scanner s1=new Scanner(System.in);
 System.out.println("Enter Book Publisher: ");
 publisher=s1.nextLine();

 System.out.println("Enter Book Price: ");

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

4

 price=s.nextFloat();

 System.out.println("Enter Book ID: ");
 ID=s1.nextLine();
 }
 void getBook()
 {
 System.out.println(title+"\t"+publisher+"\t"+ID+"\t"+price+"RS\n");
 }
}

class Author {
 String name, email;
 int totalBooks;
 Book books[];

 void setAuthor(){
 System.out.println("Enter Author name: ");
 Scanner s=new Scanner(System.in);
 name=s.nextLine();
 System.out.println("Enter Author Email: ");
 email=s.nextLine();
 System.out.println("Enter total books written: ");
 totalBooks=s.nextInt();
 books=new Book[totalBooks];
 for (int i=0;i<books.length; i++) {
 books[i]=new Book();
 books[i].setBook();
 }
 }
 void getAuthor()
 {
 System.out.print(name+"\t"+email+"\t"+totalBooks+"\t");

 for (Book b: books) {
 b.getBook();
 }
 }

}

class MAINCLASS{
 public static void main(String[] args) {
 Author a=new Author();
 a.setAuthor();
 a.getAuthor);
 }
}

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

5

Output

Enter Author name:
Robert Lafore
Enter Author Email:
robert@gmail.com
Enter total books written:
2
Enter Book title:
Object oriented programming
Enter Book Publisher:
abc publisher
Enter Book Price:
400
Enter Book ID:
121BIIIT
Enter Book title:
Programming Fundamentals
Enter Book Publisher:
xyz publishser
Enter Book Price:
500
Enter Book ID:
UIIT234
Robert Lafore robert@gmail.com 2

Object oriented programming abc publisher 121BIIIT 400.0 RS

Programming Fundamentals xyz publishser UIIT234 500.0 RS

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

6

PPoollyymmoorrpphhiissmm cclliicckk hheerree ffoorr vviiddeeoo

Polymorphism is an important concept of object-oriented programming. It simply means more

than one forms, that is, the same entity (method or operator or object) behaves differently in

different scenarios. For example: The + operator in Java is used to perform two specific

functions. When it is used with numbers (integers and floating-point numbers), it performs

addition.

 int a = 5;

int b = 6;

int sum = a + b; // Output = 11

And when we use + operator with strings, it performs string concatenation. For example,

String firstName = "abc ";

String lastName = "xyz";

name = firstName + lastName; // Output = abc xyz

Real life example of polymorphism: A person at the same time can have different

characteristic, like a man at the same time is a father, a husband, an employee, so the same

person posses different behavior in different situations. This is called polymorphism.

Polymorphism is considered as one of the important features of Object Oriented

Programming.

 Polymorphism allows us to perform a single action in different ways. In other words,

polymorphism allows you to define one interface and have multiple implementations.

 The word “poly” means many and “morphs” means forms, so it means many forms.

https://youtu.be/oSRey9OXXD8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

7

 Polymorphism is a property through which any message can be sent to objects of

multiple classes, and every object has the tendency to respond in an appropriate way

depending on the class properties.

Polymorphism is the key power of object-oriented programming. It is so important that

languages that don’t support polymorphism cannot advertise themselves as Object-Oriented

languages. Languages that possess classes but have no ability of polymorphism are called

object-based languages. Thus it is very vital for an object-oriented programming language.

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

8

Types of Polymorphism click here for video

In Java, Polymorphism can be divided into two types:

 Compile-time Polymorphism

 Run-time Polymorphism

Compile time polymorphism

It is also known as static polymorphism. The compile-time polymorphism can be achieved

through method overloading and operator overloading in Java. The follwing section shows the

difference between overloading and overriding.

Method Overloading

In a Java class, we can create methods with the same name if they differ in parameters. For

example,

void func() { ... }

void func(int a) { ... }

float func(double a) { ... }

float func(int a, float b) { ... }

https://youtu.be/hISiOlgGbw4

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

9

This is known as method overloading in Java. Let's take a working example of method
overloading.

Example 1: Method Overloading

class Demo {

 public void displayPattern(){

 for(int i = 0; i < 10; i++) {

 System.out.print("* ");

 }

 }

 public void displayPattern(char symbol) {

 for(int i = 0; i < 10; i++) {

 System.out.print(symbol+" ");

 }

 }

}

class Main {

 public static void main(String[] args) {

 Demo d1 = new Demo();

 d1.displayPattern();

 System.out.println("\n");

 d1.displayPattern('#');

 }

}

Output:

* * * * * * * * * *

In the above program, the displayPattern() method is overloaded.

 If we call the method without passing any arguments, a pattern of * is created.

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

10

 If we call the method by passing a character as an argument, a pattern of that

character is created.

Operator Overloading click here for video

Some operators in Java behave differently with different operands. For example,

 + operator is overloaded to perform numeric addition as well as string concatenation,

 operators like &, |, and ! are overloaded for logical and bitwise operations.

The + operator in Java is used to perform two specific functions. When it is used with numbers

(integers and floating-point numbers), it performs addition. For example,

https://youtu.be/DRg4Q1ZYJTI

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

11

int a = 5;

int b = 6;

int sum = a + b; // Output = 11

 And when we use + operator with strings, it performs string concatenation. For example,

String firstName = "abc ";

String lastName = "xyz";

name = firstName + lastName; // Output = abc xyz

Note: In languages like C++, we can define operators to work differently for different

operands. However, Java doesn’t support user-defined operator overloading.

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

12

Run-time Polymorphism click here for video

It is also known as Dynamic Method Dispatch. It is a process in which a function call to the

overridden method is resolved at Runtime. This type of polymorphism is achieved by Method

Overriding.

Method overriding on the other hand, occurs when a derived class has a definition for one

of the member functions of the base class. That base function is said to be overridden.

Rules for Method Overriding

 The method signature i.e. method name, parameter list and return type have to match

exactly.

 The overridden method can widen the accessibility but not narrow it, i.e. if it is private

in the base class, the child class can make it public but not vice versa.

 Suppose the same method is created in the superclass and its subclasses. In this case, the

method that will be called depends upon the object used to call the method.

https://youtu.be/V1EAKrhzfB8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

13

Example 2: Doctor & Patient click here for video

class Doctor{

 public void treatPatient() {

 System.out.println("Doctor treatment..");

 // treatment code goes here

 }

 }

class Surgeon extends Doctor {

 public void treatPatient() {

 System.out.println("Surgeon treatment..");

 // treatment of surgeon goes here

 }

 }

class test{

 public static void main (String args[]){

 Doctor doctorObj = new Doctor();

 // treatPatient method in class Doctor will be executed

 doctorObj.treatPatient();

 Surgeon surgeonObj = new Surgeon();

 // treatPatient method in class Surgeon will be executed

 surgeonObj.treatPatient();

 }

 }

 Output:
 Doctor treatment..
 Surgeon treatment..

https://youtu.be/CmqqmIeM3o8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

14

Difference between Overloading and Overriding

Method Overloading Method Overriding

Method overloading is in the same class,

where more than one method have the same

name but different signatures.

Method overriding is when one of the

methods in the super class is redefined in the

sub-class. In this case, the signature of the

method remains the same.

Ex:

void sum (int a , int b);

void sum (int a , int b, int c);

void sum (float a, double b);

Ex:

class X{

 public int sum(){

 // some code

 }

}

class Y extends X{

 public int sum(){

 //overridden method

 //signature is same

 }

}

Figure 1 Overloading VS overriding

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

15

What is Dynamic Polymorphism? click here for video

Dynamic Polymorphism is the mechanism by which multiple methods can be defined with

same name and signature in the super class and subclass and the call to an overridden method

are resolved at run time.

Step towards Dynamic Polymorphism

A reference variable of the super class can refer to a sub class object

 Doctor obj = new Surgeon();

Consider the statement

obj.treatPatient();

Here the reference variable "obj" is of the parent class, but the object it is pointing to is of the

child class (as shown in the diagram).

obj.treatPatient() will execute treatPatient() method of the sub-class - Surgeon

https://youtu.be/AdKqU8kBo9g

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

16

If a base class reference is used to call a method, the method to be invoked is decided by the

JVM, depending on the object the reference is pointing to.

For example, even though obj is a reference to Doctor, it calls the method of Surgeon, as it

points to a Surgeon object

This is decided during run-time and hence termed dynamic or run-time polymorphism

Super Keyword click here for video

What if the treatPatient method in the Surgeon class wants to execute the functionality
defined in Doctor class and then perform its own specific functionality?

In this case, keyword super can be used to access methods of the parent class from the child
class.
The treatPatient method in the Surgeon class could be written as:

treatPatient(){

 super.treatPatient();

 //add code specific to Surgeon

}

The keyword super can be used to access any data member or methods of the super class in

the sub class.

https://youtu.be/iG9O_xEozKY

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

17

Another example of method overriding is as follows.

Example 3: Dynamic Polymorphism  Method Overriding click here for video

class Animal {

 public void makeSound(){

 System.out.println("Animal sound...");

 }

}

class Dog extends Animal {

 public void makeSound() {

 System.out.println("Dog: Bark bark...");

 }

}

class Cat extends Animal {

 public void makeSound() {

 System.out.println("Cat :Meow meow...");

 }

}

class Main {

 public static void main(String[] args) {

 Dog d1 = new Dog();

 d1.makeSound();

 Cat c1 = new Cat();

 c1.makeSound();

 System.out.println("\nwhat if we create object of parent: Animal??");

 System.out.println("Do you think the output change??\n");

 Animal a=new Dog();

 a.makeSound();

 a=new Cat();

 a.makeSound();

 System.out.println("Great...This is called dynamic polymorphism

");

https://youtu.be/uLak-rh5bgY

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

18

 }

}

 Output:

Dog: Bark bark. . .

Cat: Meow-meow. . .

what if we create object of parent: Animal??

Do you think the output change??

Dog: Bark bark...

Cat: Meow meow...

Great...This is called dynamic polymorphism

In the above example, the method makeSound() has different implementations in two

different classes. When we run the program,

 the expression d1.makeSound() will call the method of Dog class. It is because d1 is an
object of the Dog class.

 the expression c1.makeSound() will call the method of Cat class. It is because c1 is an
object of the cat class.

 But the call a.makeSound() calls method based on referenced class object

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

19

The method that will be called is determined during the execution of the program. Hence,

method overriding is a run-time polymorphism.

Another Example Scenario  Polymorphism

We have one parent class, ‘Account’ with function of deposit and withdraw. Account has 2

child classes

The operation of deposit and withdraw is same for Saving and Checking accounts. So the

inherited methods from Account class will work.

Change in Software Requirement

There is a change in the requirement specification, something that is so common in the

software industry. You are supposed to add functionality privileged Banking Account with

Overdraft Facility.

For a background, overdraft is a facility where you can withdraw an amount more than

available the balance in your account.

So, withdraw method for privileged needs to implemented afresh. But you do not change the

tested piece of code in Savings and Checking account. This is advantage of OOPS

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

20

Step 1) Such that when the "withdrawn" method for saving account is called a method from

parent account class is executed.

Step 2) But when the "Withdraw" method for the privileged account (overdraft facility) is

called withdraw method defined in the privileged class is executed. This is Polymorphism.

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

21

Difference between Static & Dynamic Polymorphism click here for video

Static Polymorphism Dynamic Polymorphism

It relates to method overloading. It relates to method overriding.

Errors, if any, are resolved at compile time.

Since the code is not executed during

compilation, hence the name static.

Ex:

void sum (int a , int b);
void sum (float a, double b);
int sum (int a, int b); //compiler gives
 error.

In case a reference variable is calling an

overridden method, the method to be

invoked is determined by the object, your

reference variable is pointing to. This is can

be only determined at runtime when code in

under execution, hence the name dynamic.

Ex:

 //reference of parent pointing to child

 object

 Doctor obj = new Surgeon();

 // method of child called

 obj.treatPatient();

https://youtu.be/VYwR_z3fqm8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

22

Example #4: Employee & Salary click here for video

public class Employee {

 private String name;

 private String address;

 private int number;

 public Employee(String name, String address, int number) {

 System.out.println("Constructing an Employee");

 this.name = name;

 this.address = address;

 this.number = number;

 }

 public void mailCheck() {

 System.out.println("Mailing a check to " + this.name + " " +

this.address);

 }

 public String toString() {

 return name + " " + address + " " + number;

 }

 public String getName() {

 return name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String newAddress) {

 address = newAddress;

 }

 public int getNumber() {

 return number;

 }

}

Now suppose we extend Employee class as follows −

public class Salary extends Employee {

https://youtu.be/nfeu1XuOL6o

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

23

 private double salary; // Annual salary

 public Salary(String name, String address, int number, double

salary) {

 super(name, address, number);

 setSalary(salary);

 }

 public void mailCheck() {

 System.out.println("Within mailCheck of Salary class ");

 System.out.println("Mailing check to " + getName()

 + " with salary " + salary);

 }

 public double getSalary() {

 return salary;

 }

 public void setSalary(double newSalary) {

 if(newSalary >= 0.0) {

 salary = newSalary;

 }

 }

 public double computePay() {

 System.out.println("Computing salary pay for " + getName());

 return salary/52;

 }

}

Now, you study the following program carefully and try to determine its output −

public class VirtualDemo {

 public static void main(String [] args) {

 Salary s = new Salary("Mohd Mohtashim", "Ambehta, UP", 3,

3600.00);

 Employee e = new Salary("John Adams", "Boston, MA", 2,

2400.00);

 System.out.println("Call mailCheck using Salary reference --

");

 s.mailCheck();

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

24

 System.out.println("\n Call mailCheck using Employee

reference--");

 e.mailCheck();

 }

}

This will produce the following result −

Output

Constructing an Employee

Constructing an Employee

Call mailCheck using Salary reference --

Within mailCheck of Salary class

Mailing check to Mohd Mohtashim with salary 3600.0

Call mailCheck using Employee reference--

Within mailCheck of Salary class

Mailing check to John Adams with salary 2400.0

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

25

Q: Write code for the following classes.

You are required to implement the above example of “bank” using the concept discussed in

this lesson (dynamic polymorphism).

Note: This is not your assignment of week 13, the only thing i want from you to practice the

topic for your better understanding.

