Northern University, Nowshera

Polymorphism

Week # 13 - Lecture 25 - 26




AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Learning Objectives:

=  Assignment Solution (Week 12)

=  Polymorphism

= Compile time Polymorphism

= Method overloading

= Operator overloading

= Run time/Dynamic Polymorphism

= Method overriding

= Overloading VS overriding

= Static polymorphism VS Dynamic Polymorphism

= Home task for practice




AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Assignment Solution

Q: Write code for the following classes.

You are required to implement a system where information of authors with their books has
been stored using the concept discussed in this lesson (Association, aggregation and

composition).

Author class contains author name (String), email (String), total number of written books with

following book detail.

Book class has book ID (String), Book Title (String), price (float) and publisher (String) has

attributes.

Associate these two classes with each other (according to your understanding) in a way that
user can get the information of author with detail of his total written books, like book title,
publisher, id and price. Demonstrate your program in main() function by creating an object of

class author with at least 3 books.

Note: Write setter and getter functions for both classes and also write appropriate

constructors.

Solution:




AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)




AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Output

Enter Author name:

Robert Lafore

Enter Author Email:
robert@gmail.com

Enter total books written:
2

Enter Book title:

Object oriented programming
Enter Book Publisher:

abc publisher

Enter Book Price:

400

Enter Book ID:

121BIIIT

Enter Book title:
Programming Fundamentals
Enter Book Publisher:

xyz publishser

Enter Book Price:

500

Enter Book ID:

UIIT234

Robert Lafore robert@gmail.com 2

Object oriented programming abc publisher 121BIIIT400.0 RS

Programming Fundamentals xyz publishser UIIT234 500.0 RS




AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

POlvarp h iSm click here for video

Polymorphism is an important concept of object-oriented programming. It simply means more
than one forms, that is, the same entity (method or operator or object) behaves differently in
different scenarios. For example: The + operator in Java is used to perform two specific
functions. When it is used with numbers (integers and floating-point numbers), it performs

addition.

int a = 5;
int b = 6;
int sum = a + b;

And when we use + operator with strings, it performs string concatenation. For example,

String firstName = "abc ";

String lastName = "xyz";
name = firstName + lastName;

Real life example of polymorphism: A person at the same time can have different
characteristic, like a man at the same time is a father, a husband, an employee, so the same

person posses different behavior in different situations. This is called polymorphism.

Polymorphism is considered as one of the important features of Object Oriented

Programming.

= Polymorphism allows us to perform a single action in different ways. In other words,
polymorphism allows you to define one interface and have multiple implementations.

= The word “poly” means many and “morphs” means forms, so it means many forms.



https://youtu.be/oSRey9OXXD8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

= Polymorphism is a property through which any message can be sent to objects of
multiple classes, and every object has the tendency to respond in an appropriate way

depending on the class properties.

Polymorphism is the key power of object-oriented programming. It is so important that
languages that don’t support polymorphism cannot advertise themselves as Object-Oriented
languages. Languages that possess classes but have no ability of polymorphism are called

object-based languages. Thus it is very vital for an object-oriented programming language.




AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Types of Polymorphism  diick here for video

In Java, Polymorphism can be divided into two types:

=  Compile-time Polymorphism

= Run-time Polymorphism

r =
[ Compile Time ] Run Time
A
Method Operator Virtual
Overriding Overloading 2 Functions J
N = Sj

Compile time polymorphism
It is also known as static polymorphism. The compile-time polymorphism can be achieved

through method overloading and operator overloading in Java. The follwing section shows the

difference between overloading and overriding.

Method Overloading

In a Java class, we can create methods with the same name if they differ in parameters. For

example,
void func() { ... }
void func(int a) { ... }
float func(double a) { ... }
float func(int a, float b) { ... }



https://youtu.be/hISiOlgGbw4

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

This is known as method overloading in Java. Let's take a working example of method
overloading.

Example 1: Method Overloading

class Demo {
public void displayPattern(){
for(int i = 0; i < 10; i++) {
System.out.print("* ");
}

public void displayPattern(char symbol) {
for(int i = 0; i < 10; i++) {
System.out.print(symbol+" ");
}
}
}

class Main {

public static void main(String[] args) {
Demo d1 = new Demo();
dl.displayPattern();
System.out.println("\n");
dl.displayPattern('#');

Output:

* k% % % X X x X *x X%

HHHHEHEHEHTHRH

In the above program, the displayPattern() method is overloaded.

= |f we call the method without passing any arguments, a pattern of * is created.




AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

= |f we call the method by passing a character as an argument, a pattern of that

character is created.

Demo Class

displayPattern()

displayPattern(char symbol)

Main Class

dl.displayPattern()

dil.displayPattern('#’)

Operator Overloading diick here for video

Some operators in Java behave differently with different operands. For example,
=+ operator is overloaded to perform numeric addition as well as string concatenation,
= operators like &, |, and ! are overloaded for logical and bitwise operations.

The + operator in Java is used to perform two specific functions. When it is used with numbers
(integers and floating-point numbers), it performs addition. For example,

10


https://youtu.be/DRg4Q1ZYJTI

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

int a = 5;
int b = 6;
int sum = a + b; // Output = 11

And when we use + operator with strings, it performs string concatenation. For example,

String firstName = "abc ";
String lastName = "xyz";
name = firstName + lastName; // Output = abc xyz

Note: In languages like C++, we can define operators to work differently for different

operands. However, Java doesn’t support user-defined operator overloading.

11



AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Run-time Polymorphism ick here for video
It is also known as Dynamic Method Dispatch. It is a process in which a function call to the
overridden method is resolved at Runtime. This type of polymorphism is achieved by Method

Overriding.

Method overriding on the other hand, occurs when a derived class has a definition for one

of the member functions of the base class. That base function is said to be overridden.

Rules for Method Overriding
e The method signature i.e. method name, parameter list and return type have to match
exactly.
e The overridden method can widen the accessibility but not narrow it, i.e. if it is private

in the base class, the child class can make it public but not vice versa.

Suppose the same method is created in the superclass and its subclasses. In this case, the

method that will be called depends upon the object used to call the method.

Doctor
workAtHospital
/- -
1) Overrides the treatPatient()
treatPatient() Method
2) Adds a new <

Method Incision()

g

treatPatient()
Incision()

Surgeon

12


https://youtu.be/V1EAKrhzfB8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Example 2: Doctor & Patient jick here for video

class Doctor{
public void treatPatient() {
System.out.println("Doctor treatment..");
// treatment code goes here
}
}
class Surgeon extends Doctor {
public void treatPatient() {
System.out.println("Surgeon treatment..");
// treatment of surgeon goes here

}
}

class test{
public static void main (String args[]){

Doctor doctorObj = new Doctor();
// treatPatient method in class Doctor will be executed
doctorObj.treatPatient();

Surgeon surgeonObj = new Surgeon();
// treatPatient method in class Surgeon will be executed
surgeonObj.treatPatient();

Output:
Doctor treatment..
Surgeon treatment..

13


https://youtu.be/CmqqmIeM3o8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Difference between Overloading and Overriding

Method Overloading Method Overriding

Method overriding is when one of the
Method overloading is in the same class,

methods in the super class is redefined in the
where more than one method have the same

sub-class. In this case, the signature of the
name but different signatures.

method remains the same.

Ex:

class X{
public int sum(){
Ex: // some code
}
}

void sum (int a , int b);
void sum (int a , int b, int c);

void sum (float a, double b); class Y extends X{

public int sum(){
//overridden method
//signature is same
}
}

Test

void fun(int a)

void fun(int a)

void fun(int a, int b)
void fun(char a)

Overloading

Derived

void fun{int a)

Overriding

Figure 1 Overloading VS overriding

14



AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

What is Dynamic Polymorphism? ciick here for video
Dynamic Polymorphism is the mechanism by which multiple methods can be defined with
same name and signature in the super class and subclass and the call to an overridden method

are resolved at run time.

Step towards Dynamic Polymorphism

A reference variable of the super class can refer to a sub class object

Doctor obj = new Surgeon();
Consider the statement
obj.treatPatient();
Here the reference variable "obj" is of the parent class, but the object it is pointing to is of the

child class (as shown in the diagram).

HEAP

(/_b'\‘| LTI
2 ) treatPatient()

Reference
Variable of Object of the
Doctor Class Surgeon Class

obj.treatPatient() will execute treatPatient() method of the sub-class - Surgeon

15


https://youtu.be/AdKqU8kBo9g

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

If a base class reference is used to call a method, the method to be invoked is decided by the
JVM, depending on the object the reference is pointing to.

For example, even though obj is a reference to Doctor, it calls the method of Surgeon, as it
points to a Surgeon object

This is decided during run-time and hence termed dynamic or run-time polymorphism

Super Keyword ciick here for video

What if the treatPatient method in the Surgeon class wants to execute the functionality
defined in Doctor class and then perform its own specific functionality?

In this case, keyword super can be used to access methods of the parent class from the child
class.
The treatPatient method in the Surgeon class could be written as:

treatPatient(){

super.treatPatient();
//add code specific to Surgeon

The keyword super can be used to access any data member or methods of the super class in

the sub class.

16


https://youtu.be/iG9O_xEozKY

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Another example of method overriding is as follows.

Example 3: Dynamic Polymorphism = Method Overriding ciick here for video

class Animal {
public void makeSound(){
System.out.println("Animal sound...");

class Dog extends Animal {

public void makeSound() {
System.out.println("Dog: Bark bark...");

class Cat extends Animal {

public void makeSound() {
System.out.println("Cat :Meow meow...");

}

class Main {
public static void main(String[] args) {
Dog dl1 = new Dog();
d1l.makeSound();

Cat c1 = new Cat();

cl.makeSound();

System.out.println("\nwhat if we create object of parent: Animal??");
System.out.println("Do you think the output change??\n");

Animal a=new Dog();

a.makeSound();

a=new Cat();

a.makeSound();

System.out.println("Great...This is called dynamic polymorphism

");

17


https://youtu.be/uLak-rh5bgY

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Output:

Dog: Bark bark.
Cat: Meow-meow.

what if we create object of parent: Animal??
Do you think the output change??

Dog: Bark bark...

Cat: Meow meow...

Great...This is called dynamic polymorphism

In the above example, the method makeSound() has different implementations in two

different classes. When we run the program,

= the expression d1.makeSound() will call the method of Dog class. It is because d1 is an
object of the Dog class.

= the expression cl.makeSound() will call the method of Cat class. It is because c1 is an
object of the cat class.

= But the call a.makeSound() calls method based on referenced class object

Dog (subclass)

makeSound() Main Class

d1.makeSound()

Cat (subclass)

cl.makeSound()

makeSound()

18



AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

The method that will be called is determined during the execution of the program. Hence,

method overriding is a run-time polymorphism.

Another Example Scenario = Polymorphism

We have one parent class, ‘Account’ with function of deposit and withdraw. Account has 2

child classes

The operation of deposit and withdraw is same for Saving and Checking accounts. So the

inherited methods from Account class will work.

[ parent class \}" o Account ) <l R’
> = deposit() J! paxent ciass \
R : — | raving same
f chid class | WHEROrwA) — fvncm‘r’\'?)f deposit
."‘.\ l1 : and Withdraw
\\\ / ‘ function, no need
n\\/ NA | for Child class o
}‘ define them

- seperateyy

Change in Software Requirement

There is a change in the requirement specification, something that is so common in the
software industry. You are supposed to add functionality privileged Banking Account with

Overdraft Facility.

For a background, overdraft is a facility where you can withdraw an amount more than

available the balance in your account.

So, withdraw method for privileged needs to implemented afresh. But you do not change the

tested piece of code in Savings and Checking account. This is advantage of OOPS

19



AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

SAVENG CRECRING PREVILEGED
Nl S’ N

cml depostO) | | depostO | | | depostO | aw
D] i . i 8

Step 1) Such that when the "withdrawn" method for saving account is called a method from

parent account class is executed.

7] withdraw)

Step 2) But when the "Withdraw" method for the privileged account (overdraft facility) is

called withdraw method defined in the privileged class is executed. This is Polymorphism.

for privieged
action (overdraft

fwithdrawO ]~ focin cosom
| | ithdrane acton

5 acsed from
0S5 priviegd

20



AJ/ Week 13-Lecture 25-26

Object Oriented Programming using Java (ECS-122)

Difference between Static & Dynamic Polymorphism dick here for video

Static Polymorphism

It relates to method overloading.

Errors, if any, are resolved at compile time.
Since the code is not executed during

compilation, hence the name static.

Ex:

void sum (int a , int b);

void sum (float a, double b);

int sum (int a, int b); //compiler gives
error.

Dynamic Polymorphism

It relates to method overriding.

In case a reference variable is calling an
overridden method, the method to be
invoked is determined by the object, your
reference variable is pointing to. This is can
be only determined at runtime when code in
under execution, hence the name dynamic.

Ex:

//reference of parent pointing to child
object

Doctor obj = new Surgeon();

// method of child called
obj.treatPatient();

21


https://youtu.be/VYwR_z3fqm8

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Example #4: Employee & Salary click here for video

public class Employee {
private String name;
private String address;
private int number;

public Employee (String name, String address, int number) {

System.out.println ("Constructing an Employee™) ;

this.name = name;
this.address = address;
this.number = number;

}

public void mailCheck () {
System.out.println("Mailing a check to " + this.name + "

this.address) ;

}

public String toString () {
return name + " " + address + " " + number;

}

public String getName () {
return name;

}

public String getAddress () {
return address;

}

public void setAddress (String newAddress)
address = newAddress;

public int getNumber () {
return number;

Now suppose we extend Employee class as follows -

public class Salary extends Employee {



https://youtu.be/nfeu1XuOL6o

AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

private double salary; // Annual salary

public Salary(String name, String address, int number, double
salary) {

super (name, address, number);
setSalary(salary) ;
}

public void mailCheck () {
System.out.println ("Within mailCheck of Salary class ");
System.out.println("Mailing check to " + getName ()
+ " with salary " + salary);

}

public double getSalary () {
return salary;

}

public void setSalary(double newSalary) {
if (newSalary >= 0.0) {
salary = newSalary;
}
}

public double computePay () {
System.out.println ("Computing salary pay for " + getName()) ;
return salary/52;

Now, you study the following program carefully and try to determine its output -

public class VirtualDemo {

public static void main(String [] args) {
Salary s = new Salary("Mohd Mohtashim", "Ambehta, UP", 3,
3600.00) ;

Employee e = new Salary ("John Adams", "Boston, MA", 2,
2400.00) ;

System.out.println ("Call mailCheck using Salary reference --

")

s.mailCheck () ;

23



AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

System.out.println("\n Call mailCheck using Employee
reference--");

e.mailCheck () ;

This will produce the following result -

Output

Constructing an Employee
Constructing an Employee

Call mailCheck using Salary reference --
Within mailCheck of Salary class
Mailing check to Mohd Mohtashim with salary 3600.0

Call mailCheck using Employee reference--
Within mailCheck of Salary class
Mailing check to John Adams with salary 2400.0

24



AJ/ Week 13-Lecture 25-26 Object Oriented Programming using Java (ECS-122)

Q: Write code for the following classes.

You are required to implement the above example of “bank” using the concept discussed in

this lesson (dynamic polymorphism).

Note: This is not your assignment of week 13, the only thing i want from you to practice the

topic for your better understanding.

25



